If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5^5=x^2/(x+3)
We move all terms to the left:
5^5-(x^2/(x+3))=0
Domain of the equation: (x+3))!=0We add all the numbers together, and all the variables
x∈R
-(x^2/(x+3))+3125=0
We multiply all the terms by the denominator
-(x^2+3125*(x+3))=0
We calculate terms in parentheses: -(x^2+3125*(x+3)), so:We get rid of parentheses
x^2+3125*(x+3)
We multiply parentheses
x^2+3125x+9375
Back to the equation:
-(x^2+3125x+9375)
-x^2-3125x-9375=0
We add all the numbers together, and all the variables
-1x^2-3125x-9375=0
a = -1; b = -3125; c = -9375;
Δ = b2-4ac
Δ = -31252-4·(-1)·(-9375)
Δ = 9728125
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9728125}=\sqrt{625*15565}=\sqrt{625}*\sqrt{15565}=25\sqrt{15565}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3125)-25\sqrt{15565}}{2*-1}=\frac{3125-25\sqrt{15565}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3125)+25\sqrt{15565}}{2*-1}=\frac{3125+25\sqrt{15565}}{-2} $
| -16.6n-20+17.9n=13.54+5.6 | | x/5+3/2=8 | | 11y−(2y−2)=65 | | -6a–4=-1 | | -7-6x=-21-2x | | 17=n/4 | | 18u-19=17u | | 4q+4q+9=-9+5q | | -3n+16n-2=-20+11n | | 6x+7=4-3(-2x+4) | | -2x+5(x-6)=6 | | u/8=11 | | 3n+1(n=4) | | 5b-14=8b+7 | | 4,2x-7=11-3,3x | | 17=1+p | | 3k-5=7k-21= | | -0.8y+12.1=-1.8-2 | | -5-4n=n | | -7-6x=22-2x | | g+10=32 | | 19+15g=16g | | -7w-6=-6w-18 | | 10x-6x=5-6 | | 3=m/43 | | a-4.8=5.3a | | 3=m/4÷ | | 7u=8u+10 | | -5c-17c+19=-15-20c | | 4m=-2m+6 | | -2+-2h=-7h | | 8+9k=10+10k |